Scenario tree generation for stochastic programming models using GAMS/SCENRED

Holger Heitsch¹ and Steven Dirkse²

 1 Humboldt-University Berlin, Department of Mathematics, Germany 2 GAMS Development Corp., Washington D.C., United States of America

INFORMS Annual Meeting Washington D.C., October 12-15, 2008

イロト イヨト イヨト イヨト

Overview

What is GAMS/SCENRED about

- GAMS/SCENRED is a link between the well-known General Algebraic Modeling System (GAMS) and the software tool SCENRED
- SCENRED provides a collection of software routines dealing with recent scenario tree manipulation algorithms in stochastic programming
- It is developed at the Department of Mathematics at Humboldt-University Berlin by the research group of Prof. Werner Römisch
- ► A first version of GAMS/SCENRED has been available since 2002
- ► Now we offer a basically extended version SCENRED2

What is new in SCENRED2

- SCENRED has been extended by scenario tree construction tools
- Available scenario reduction methods are improved by new metrics
- A lot of visualization functions (connected to GNUPLOT) are integrated

イロト 不同 トイヨト イヨト

Introduction

- Stochastic programs deal with finite sets of scenarios to model the probabilistic information on random data
- The number of scenarios could be very large
- Scenario reduction becomes important to reduce the high sized scenario based models to make them numerical tractable

 \Rightarrow Scenario reduction aims to reduce the number of scenarios and to maintain the probability information as good as possible!

Probability metrics

- ▶ To control the probability information probability metrics are needed
- Optimal values behave stable with respect to small perturbations of the underlying distribution in terms of probability metrics of the form

$$d_{\mathcal{F}}(P,Q) = \sup_{f \in \mathcal{F}} \left| \int_{\Xi} f(\xi) P(d\xi) - \int_{\Xi} f(\xi) Q(d\xi) \right|$$

Linear case:

$$\mathcal{F}_c := \left\{ f : \Xi \to \mathbb{R} \mid f(\xi) - f(\tilde{\xi}) \le c(\xi, \tilde{\xi}) \text{ for all } \xi, \tilde{\xi} \in \Xi \right\}$$
$$c(\xi, \tilde{\xi}) := \max\left\{ 1, \|\xi - \xi_0\|^{r-1}, \|\tilde{\xi} - \xi_0\|^{r-1} \right\} \|\xi - \tilde{\xi}\|$$

Metrics of this type are called Fortet-Mourier metrics of order r

Dual representation

► The dual representation of probability metrics are of the form $\mu_c(P,Q) = \inf \left\{ \int_{\Xi \times \Xi} c(\xi,\tilde{\xi}) \eta(d\xi,d\tilde{\xi}) \, : \, \eta \in M(P,Q) \right\}$

These are the Monge-Kantorovich transport functionals

It holds

 $d_{\mathcal{F}_c}(P,Q) \leq \mu_c(P,Q) \quad ext{and} \quad d_{\mathcal{F}_c}(P,Q) = \mu_{\widehat{c}}(P,Q)$

for the so-called reduced costs \hat{c} with

$$\hat{c}(\xi,\tilde{\xi}):=\inf\left\{\sum_{j=1}^{n+1}c(z_{j-1},z_j):z_0=\xi,\,z_{n+1}=\tilde{\xi},\,z_j\in\Xi,\,n\in\mathbb{N}\right\}$$

⇒ SCENRED2 allows to control the scenario reduction w.r.t. both the Fortet-Mourier metric and the Monge-Kantorovich functional!

- The dual reformulation allows to compute the scenario reduction without solving the underlying transport problem
- The problem of optimal scenario reduction is to find convenient scenarios for removing and it can be stated as

$$\min\left\{\left.D_J:=\sum_{i\in J}p_i\min_{j\notin J}\hat{c}(\xi^i,\xi^j)\right|J\subset\{1,\ldots,N\},\,\#J=N-n\right\}$$

Approximative solutions by fast (heuristic) algorithms

Backward Reduction:

Delete scenario u^k such that $D_{J^{k-1}\cup\{u^k\}} = \min_{u\notin J^{k-1}} D_{J^{k-1}\cup\{u\}}$

Forward Selection:

Select scenarien u^k such that $D_{J^{k-1}\setminus\{u^k\}} = \min_{u\in J^{k-1}} D_{J^{k-1}\setminus\{u\}}$

Example 2-dimensional normal distribution

Scenario reduction of the normal distribution from 10 000 scenarios to 20

< ロ > < 同 > < 三 > < 三 >

Example 2-dimensional normal distribution

Scenario reduction of the normal distribution from 10000 scenarios to 20

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

► We concider a multiperiod decision problem of the form

- We have a time discrete stochastic input process $\xi = (\xi_1, \dots, \xi_T)$
- We introduce a decision process x = (x₁,..., x_T), where the stage decision x_t only depends on outcomes ξ₁,..., ξ_t
- $\Rightarrow \underline{\text{Observation:}} \text{ A multistage stochastic program implies a certain information structure: } \mathcal{F}_1(\xi) \subseteq \ldots \subseteq \mathcal{F}_t(\xi) \subseteq \ldots \subseteq \mathcal{F}_T(\xi) \\ (\mathcal{F}_t(\xi) \text{ denotes the } \sigma \text{-field generated by } (\xi_1, \ldots, \xi_t))$

-

Assuming that the support of ξ is infinite:

- We have an infinite dimensional optimization problem
- Optimization problem is intractable in general

Replace ξ by a scenario tree approximation ξ_{tr} (finite distribution)

How does the optimal value change when ξ is replaced by ξ_{tr} ?

イロト 不同 トイヨト イヨト

Theorem (Stability – Heitsch/Römisch/Strugarek 06) Under some regularity assumptions it holds for $\|\xi - \tilde{\xi}\|_r < \delta$:

$$|v(\xi) - v(\tilde{\xi})| \leq L\left(\|\xi - \tilde{\xi}\|_r + D_{\mathrm{f}}(\xi, \tilde{\xi})
ight),$$

where $v(\cdot)$ denotes the optimal value and $D_{\rm f}(\xi, \tilde{\xi})$ is a distance of the filtrations defined by ξ and $\tilde{\xi}$, respectively.

The filtration (information) distance is defined by

$$D_{\mathrm{f}}(\xi,\tilde{\xi}) := \inf_{x \in S(\xi) \atop \tilde{x} \in S(\tilde{\xi})} \sum_{t=2}^{T-1} \max\left\{ \|x_t - \mathbb{E}[x_t | \mathcal{F}_t(\tilde{\xi})]\|_{r'}, \|\tilde{x}_t - \mathbb{E}[\tilde{x}_t | \mathcal{F}_t(\xi)]\|_{r'} \right\}$$

Here $S(\xi)$ denotes the solution set of the model with input ξ .

イロト イヨト イヨト イヨト 三日

General approach

- 1. Providing of scenarios ξ^i with probabilities p_i , i = 1, ..., N:
 - Adaption of a statistic model for the underlying data process (decomposition of historical data, cluster analysis, time series models, stress scenarios)
 - Simulation of scenarios out of the statistic model (may be a large number of scenarios)
- Construction of the scenario tree out of scenarios ξⁱ based on stagewise approximations:
 - Choose a construction ε-percentage (should depend on the number of scenarios)
 - Determine a scenario tree ξ_{tr} by recursive scenario reduction (both the probability distance and the filtration distance can be controlled by this approach)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Recursive forward scenario reduction:

Recursive backward scenario reduction:

Stochastic purchase problem

$$\min \left\{ \mathbb{E} \left[\sum_{t=1}^{3} \xi_t x_t \right] \middle| \begin{array}{l} x_t \ge 0, \\ x_t \text{ is } \mathcal{F}_t(\xi) \text{-measurable,} \\ x_1 + x_2 + x_3 \ge 1 \end{array} \right\}$$

Assumptions

- ξ_1 is deterministic and $\xi_1 \equiv 1$
- $\xi_2 \sim U([0,1])$ (uniformly distributed)
- $\xi_3 \sim L([0,1])$ (linear distributed) with slope depending on ξ_2 :

$$\mathbb{P}(\xi_3 \in [a,b] \mid \xi_2 = x) = \int_a^b [2(1-x) - 2(1-2x)y] dy$$

Probability distribution

Joint density function of the stochastic components (ξ_2, ξ_3)

(日) (同) (日) (日)

э

Analytical solution

Optimal decision

$$x_1 \equiv 0, \qquad x_2 = \left\{ \begin{array}{cc} 1 & , \text{ if } \xi_2 \leq \frac{1}{2} \\ 0 & , \text{ otherwise} \end{array} \right., \qquad x_3 = \left\{ \begin{array}{cc} 1 & , \text{ if } \xi_2 > \frac{1}{2} \\ 0 & , \text{ otherwise} \end{array} \right.$$

Optimal value (OPT) / Value of perfect information (VOPI)

OPT = 0.4167 VOPI = 0.3667

Construction of the scenario tree

< ロ > < 回 > < 回 > < 回 > < 回 > .

Ξ.

Construction of the scenario tree

▶ Simulation of a scenario sample ξ^1, \ldots, ξ^N based on the distribution

イロン イロン イヨン イヨン 三日

Construction of the scenario tree

- ▶ Simulation of a scenario sample ξ^1, \ldots, ξ^N based on the distribution
- GAMS/SCENRED2 allows to generate a scenario tree

< ロ > < 回 > < 回 > < 回 > < 回 > <

э

 $OPT^* = 0.4167$ / $VOPI^* = 0.3667$

Numerical results

Sample	Scenarios	Tree size	OPT	VOPI
A		200	0.4156	
	500	100	0.4179	0.3629
		50	0.4164	_
В		200	0.4162	
	500	100	0.4197	0.3640
		50	0.4179	_
С	500	200	0.4245	
		100	0.4261	0.3749
		50	0.4246	-
D		200	0.4092	
	500	100	0.4121	0.3632
		50	0.4114	-

- * ロ > * 個 > * 注 > * 注 > - 注 - の < @

Using GAMS/SCENRED

Organization of the GAMS program

- 1. Data:
 - set & parameter declarations and definitions
 - include SCENRED symbols by: \$libinclude scenred.gms
 - setup scenarios (by nodes) and options for SCENRED run
- 2. SCENRED call:
 - export data from GAMS to SCENRED (using GDX unload)
 - execute SCENRED or SCENRED2
 - import data from SCENRED to GAMS (using GDX load)
- 3. Model:
 - variable & equation declarations and definitions
 - model definitions using node subsets of reduced/constructed tree
 - solve the model

Example: An implementation of the stochastic *purchase example* problem is available as GAMS program ('*srpurchase.gms*')