

Stochastic Optimization: Recent Enhancements in Algebraic Modeling Systems

Michael R. Bussieck GAMS Development Corp. MBussieck@gams.com http://www.gams.de

GAMS at a Glance

General Algebraic Modeling System: Algebraic Modeling Language, Integrated Solver, Model Libraries, Connectivity- & Productivity Tools Design Principles:

- Balanced mix of declarative and procedural elements
- Open architecture and interfaces
 to other systems
- Different layers with separation of:
 - model and data
 - model and solution methods
 - model and operating system
 - model and interface

AML and Stochastic Programming (SP)

- Algebraic Modeling Languages/Systems good way to represent optimization problems
 - Algebra is a universal language
 - Hassle free use of optimization solvers
 - Simple connection to data sources (DB, Spreadsheets, ...) and analytic engines (GIS, Charting, ...)
- Large number of (deterministic) models in production
 - Opportunity for seamless introduction of new technology like Global Optimization, Stochastic Programming, …
 - AML potential framework for SP

Stochastic Programming Claims and 'Facts'

- Lots of application areas (Finance, Energy, Telecommunication)
- Mature field (Dantzig '55)
- Variety of SP problem classes with specialized solution algorithms (e.g. Bender's Decomposition)
 - Compared to deterministic mathematical programming (MP) small fraction
 - Only 0.1% of NEOS submission to SP solvers
 - No/few commercially supported solvers for SP
 - Various frustrations with industrial SP projects

Example Model: Gas Price Model

Natural Gas NYMEX Weekly Price Chart

n-Stage Stochastic Programs

- Construct Scenario Tree:
 - Start with today's price and use a (discrete) distribution
 - Realizations: up, down
- Stochastic Linear Program (block structure)
 - Decomposition (Benders, SDP, SDDP, ...)
 - In practice Deterministic Equivalent with Barrier method

$$\begin{aligned} Z_{HN} &= \min_{x_1} \quad \left\{ \begin{array}{ll} c_1 x_1 + E_{\xi_2} \left[\min_{x_2} c_2 x_2 + E_{\xi_3 | \xi_2} \left[\min_{x_3} c_3 x_3 + \ldots + E_{\xi_T | \xi_{T-1} | \ldots | \xi_2} \min_{x_T} c_T x_T \right] \right] \\ \text{subject to:} \\ & A_{11} x_1 &= b_1 \\ A_{21} x_1 + A_{22} x_2 &= b_2 \\ A_{31} x_1 + A_{32} x_2 + A_{33} x_3 &= b_3 \\ \vdots & \ddots & \vdots \\ A_{T1} x_1 + A_{T2} x_2 + A_{T3} x_3 + \ldots + A_{TT} x_T = b_T \end{aligned}$$

ScenRed (Römisch et. al., HU Berlin)

- Find good approximation of original scenario tree of significant smaller size.
- Available since 2002
- Integrated in GAMS system
- No extra cost

<u>gas2.gms</u>

(n-stage SP, distribution) plus ScenRed

Scenario based Stochastic Programs

- Random variables with distributions versus independent scenarios
- Wait-and-see (WS)
 - solve scenarios independently (grid computing)
- Expected value problem (EV)
 - Calculate EV of random variables and solve
- Expectation of EV problem (EEV)
 - Fix decisions of EV problem and evaluate

gas3.gms (Scenario based: WS, EEV)

3

-5 -6

-10

-13

Value of Stochastic Solution/Visualization

- WS > EEV (maximization!)
- Visualize results!
 - e.g. fan plot (Tom Rutherford, ETH Zürich)

2-Stage Stochastic Programs

- SP Solver DECIS (Gerd Infanger, Stanford, USA)
 - Stores only one instance of the problem and generates scenario sub-problems as needed
 - Solution Strategies
 - Universe problem (all scenarios)
 - Sampling: Crude Monte Carlo/ Importance sampling

 $[\]Rightarrow$ <u>gas4.gms</u> (2-stage, DECIS)

Tree Generation: ScenRed2

• Construct a true scenario tree from independent scenarios:

VSS = HN-EEV

- Reconstruct underlying distribution from a set of scenarios
- Here-and-now (HN): WS
 <u>> HN > EEV</u>
- Value of stochastic solution
- Expected value of perfect information EVPI = WS-HN

gas5.gms (n-stage, ScenRed2)

The Rich World of Stochastic Programming

- n-stage stochastic linear programming (SLP) just one option
- SP models from application areas exist (finance)
- Economic modeling
 - mixed complementarity problems
 - scenario trees
 with few branches

Conclusion

- Stochastic Programming still challenging and developing field
 - GUPOR: Uncertainty: An OR Frontier (Greenberg, 2006)
- Lack of solution technology limits the dissemination of SP
- There is more to SP than n-stage SLP
- Representation of results
- Collection of comprehensive & reproducible examples could help to *spread the word*

Contacting GAMS

Europe:

GAMS Software GmbH Eupener Str. 135-137 50933 Cologne Germany Phone: +49 221 949 9170 Fax: +49 221 949 9171 http://www.gams.de USA:

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007 USA Phone: +1 202 342 0180

Fax: +1 202 342 0181 http://www.gams.com